
1

PSYCH-UH 1004Q: Statistics for Psychology�

Class 11: confidence intervals

Prof. Jon Sprouse

Psychology



Point estimates vs Interval estimates
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A point estimate is a single number that is offered as an estimate of a 
statistic or a parameter.

Imagine you were playing a guessing game about the 
number of jelly beans in a jar. A point estimate would 
be to give a single number as your guess, like 87.

How confident are you that the true number is equal to 
your point estimate? Probably not very confident.

An interval estimate is a range (a lower bound and an upper bound) that is 
offered as an estimate for a statistic or a parameter.

An interval estimate would be to give a range as your 
guess, like 40-120.

How confident are you that the true number lies within 
your range? Probably much more confident.



So, what we want is a way of making interval 
estimates that is grounded in probability…


Confidence Intervals: a first introduction
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Confidence Intervals
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Confidence intervals are one specific type of interval estimate.

They were created by Jerzy Neyman, so they are 
frequentist, and they are specifically part of the 
Neyman-Pearson approach to NHT.

As a frequentist idea, CIs they are about repeating a 
process over and over again to derive a frequentist 
probability statement (long-run relative frequency).

As a Neyman-Pearson idea, CIs are about minimizing errors when you make 
decisions.

Jerzy Neyman

(1894-1981)

x ̄

tcrit · σx ̄tcrit · σx ̄ upper bound: x ̄+ (tcrit · σx)̄ 

lower bound: x ̄- (tcrit · σx)̄ 



The process for constructing a CI
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Pick how often you'd like to not be wrong - 95% is a common choice

Look up the critical t-value for 5% errors for your experiment's df. You must 
use the two-tailed t because the population mean could be in either 
direction.

Multiply that t-value by the standard error (estimated from your sample).

Subtract that number from your sample mean for the lower bound and add 
that number to your mean for the upper bound.

Declare that the population mean is in this interval. If we were to repeat 
this over and over, we’d be right 95% of the time!

Warning - the population mean may not be in the interval! We don't know the 
population mean, so we don't know. But under the N-P approach to NHT, we 
need to make a DECISION. In N-P, we just declare that it is there. (Just like 
we just declare that we have rejected the null hypothesis or not.)

x ̄

tcrit · σx ̄tcrit · σx ̄ upper bound: x ̄+ (tcrit · σx)̄ 

lower bound: x ̄- (tcrit · σx)̄ 

4. 

3. 

2. 

1. 

5. 



Some examples calculating a CI
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mean = 47

standard deviation = 30

df=24

mean = 148

standard deviation = 20

df=15

mean = 5.5

standard deviation = .75 

df=8

Remember: we do not know if the population mean is within these intervals 
or not. We simply declare that it is. The goal is to minimize our total errors if 
we repeat the process over and over, not know whether we made an error or 
not in this specific instance.

R-code: qt(.975, df=24)

tcrit = 2.06

σx ̄= 6

R-code: qt(.975, df=15)

tcrit = 2.13

σx ̄= 5

R-code: qt(.975, df=8)

tcrit = 2.31

σx ̄= .25

CI: 47 ± 12.36

so, 34.64 to 59.36

CI: 148 ± 10.65

so, 137.35 to 158.65

CI: 5.5 ± 0.58

so, 4.92 to 6.08

Example Numbers to calculate Confidence Interval



The four N-P outcomes
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Calculating a CI and declaring that the population mean is within it will lead to 
four combinations of the state of the universe and your decision.

The cool thing is that if you follow this procedure for constructing CIs and 
declaring the population mean is in the CI, you will be correct 95% of the time 
(or whatever percentage you set), and only make an error 5% of the time (or 
1 minus whatever percentage you set).

outside the CI inside the CI

inside the CI error correct decision

outside the CI correct decision error

The population mean is:

Your decision is:



In practice you only experience the top row
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With CIs, you never claim that the mean is outside the CI, so you really only 
need to look at the top row of the chart:

The cool thing is that if you follow this procedure for constructing CIs and 
declaring the population mean is in the CI, you will be correct 95% of the time 
(or whatever percentage you set), and only make an error 5% of the time (or 
1 minus whatever percentage you set).

outside the CI inside the CI

inside the CI error correct decision

outside the CI correct decision error

The population mean is:

Your decision is:



To see the probability, we can watch a 
simulation 
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https://www.esci-
dances.thenewstatistics.com/ 

This is an interactive chart that simulates sampling repeatedly from a 
population, calculating a mean and standard deviation for the sample, and 
then drawing a confidence interval around that sample mean.

But, crucially, you can also see that some CIs do not contain the population 
mean. It is still just an estimate!

This will allow us to watch how 
many CIs overlap the 
population mean.

You will see that it is the 
percentage that we set.

https://www.esci-dances.thenewstatistics.com/
https://www.esci-dances.thenewstatistics.com/


The width of CIs
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You can see from the equation that the width of CIs is dependent on the 
standard error of the sample. This will vary from sample to sample

And it will also vary by sample size because standard error is divided by the 
square root of the sample size. So a larger sample size will lead to a smaller 
SE all other things equal.

upper bound: x ̄+ (tcrit · σx)̄ 

lower bound: x ̄+ (tcrit · σx)̄ 



Why does this process work?

(why does the process capture the population mean in 95% of cases?)
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Why does the process yield CIs containing the 
population mean 95% of the time?

For df=24, the critical t for a two-tailed alpha of .05 is 2.06. That is the t-value 
that marks .025 in either tail of the t-distribution. If we multiply it by the 
standard error (as we do in CIs!), it marks out 95% of the sampling 
distribution of the mean!

µx ̄= 175µ = 175

σ = 10 σx ̄= 2

If we draw a 95% confidence interval around the mean of the sampling 
distribution of the mean (because we are talking about sample means!), you 
can see that it captures 95% of possible sample means!



0

5000

10000

15000

20000

165 170 175 180 185
sampling distribution of the mean

Fr
eq

ue
nc

y

Why does the process yield CIs containing the 
population mean 95% of the time?

And now we can see that if we 
select other sample means, and 
draw a 95% CI around those, 
their CI will overlap the population 
mean if they are within that 95%.

µx ̄= 175

σx ̄= 2

On average, sample means that are within 95% of the distribution of the 
population mean will have CIs that overlap the population mean. So, on 
average, if you declare that your CIs always include the population mean, you 
will be correct 95% of the time.

In reality, things are a bit more 
complicated because the width of 
the CIs will vary based on the 
standard deviation of the specific 
sample, but this will be offset by 
changes in the mean.



To see the probability, we can watch a 
simulation 

14

https://www.esci-
dances.thenewstatistics.com/ 

Let’s watch this again. It is worth seeing it so you can really feel how CIs work!

But, crucially, you can also see that some CIs do not contain the population 
mean. It is still just an estimate!

This will allow us to watch how 
many CIs overlap the 
population mean.

You will see that it is the 
percentage that we set.

https://www.esci-dances.thenewstatistics.com/
https://www.esci-dances.thenewstatistics.com/


A cool relationship between CIs and t-tests

(Or, why you can use CIs as a one-sample, two-tailed t-test to reject the null 

hypothesis at a given alpha.)
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Using CIs as two-tailed one-sample t-test
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Confidence intervals are equivalent to a two-tailed one-sample t-test. To see 
this, let’s imagine some scenarios in which you have calculated a CI from your 
sample mean (in violet) and you have a population mean under the null 
hypothesis (in red).

x ̄

tcrit · σx ̄tcrit · σx ̄

µ0

If the µ0 is less than the lower 
bound of the CI, then a one-sample 
t-test would be significant at 
p<.05.

x ̄

tcrit · σx ̄tcrit · σx ̄

µ0

If the µ0 is greater than the upper 
bound of the CI, then a one-sample 
t-test would be significant at 
p<.05.

x ̄

tcrit · σx ̄tcrit · σx ̄

µ0

If the µ0 is within the bounds of 
the CI, then a one-sample t-test 
would not be significant at 
p<.05.



We can see this with simple algebra!

In a two-tailed t-test, we reject the null when t>2.06 or t<-2.06.

For df=24, the critical t for a two-tailed alpha of .05 is 2.06.

So, just through basic 
algebra, we can 
equivalently say that we 
reject the null when:

Here are the formulae for 
the two outcomes that will 
be significant:

> 2.06
x ̄- µ0

sx ̄
< -2.06

x ̄- µ0

sx ̄

Multiply both sides by sx:̄ > 2.06·sx ̄x ̄- µ0 < -2.06·sx ̄x ̄- µ0

Subtract x ̄from both sides: > 2.06·sx ̄- x ̄- µ0 < -2.06·sx ̄- x ̄- µ0

Multiply both sides by -1: µ0 < x ̄- 2.06·sx ̄ µ0 > x ̄+ 2.06·sx ̄

µ0 > x ̄+ 2.06·sx ̄µ0 < x ̄- 2.06·sx ̄

You will recognize these as the two equations for the lower and upper bounds 
of the 95% confidence interval. This shows that if the null hypothesis mean is 
below or above the interval, it is algebraically equivalent to being significant!



Using CIs as t-tests in practice

mean = 47

standard deviation = 30

df=24

mean = 5.5

standard deviation = .75 

df=8

We can equivalently say that we can reject the null hypothesis at an alpha of 
.05 (.025 in each tail) for any population mean above 59.36 or below 34.64.

R-code: qt(.975, df=24)

tcrit = 2.06

σx ̄= 6

R-code: qt(.975, df=8)

tcrit = 2.31

σx ̄= .25

CI: 47 ± 12.36

CI: 5.5 ± 0.58

Example Numbers to calculate Confidence Interval

Example Numbers to calculate Confidence Interval

We can equivalently say that we can reject the null hypothesis at an alpha of 
.05 (.025 in each tail) for any population mean above 6.08 or below 4.92.



CAUTION: confidence intervals are open to 
misinterpretation

19



What you can conclude

The probability statement for confidence intervals is about the procedure of 
drawing the boundaries. It is not about the specific values contained within the 
boundaries.

What you can claim correctly: the procedure for drawing CIs means that 95% 
of the CIs drawn this way will contain the population mean. 

What you can claim correctly: if a value is outside of the CI, a t-test would be 
significant at the equivalent alpha level (95% = .05 alpha, .025 in each tail) 
for a population mean of that value.

mean = 47

standard deviation = 30

df=24

So, I can claim that if I repeat this procedure over and over, getting a different 
CI each time, 95% of them will contain the population mean. And, I can claim 
that a null hypothesis for a population mean above or below these bounds 
would be significant. That is all.

R-code: qt(.975, df=24)

tcrit = 2.06

σx ̄= 6

CI: 47 ± 12.36

Example Numbers to calculate Confidence Interval



What you cannot conclude

The probability statement for confidence intervals is about the procedure of 
drawing the boundaries. It is not about the specific values contained within the 
boundaries.

What you CAN'T claim: anything about the specific values in a single CI that is 
sitting in front of you.

You cannot say that there is a 95% chance that the mean is within this CI.

You cannot say that the specific values in this specific interval in front of you 
are more likely to be correct than the values outside of it.

mean = 47

standard deviation = 30

df=24

R-code: qt(.975, df=24)

tcrit = 2.06

σx ̄= 6

CI: 47 ± 12.36

Example Numbers to calculate Confidence Interval

This is counterintuitive! I know! It is the frustrating thing about CIs.



Showing you why

It is very tempting to make the logical leap from that the fact that the 
procedure will capture the population mean 95% of the time to the incorrect 
claim that there is a 95% chance that the mean is within a specific CI.

But we can show that this is a logical fallacy with a contrived example.

Let’s say that I am allowed to take samples of students, and ask them their 
SAT scores. And imagine that I created the following interval procedure, called 
a Jon Interval.

If the time on my watch ends in an even minute, the interval is 
0-399 (lower = 0, upper = 399).

Let’s say that I want to draw an interval estimate for the mean SAT score at 
NYUAD. SAT scores can only range from 400 to 1600. That is how the test 
works.

If the time on my watch ends in an odd minute, the interval is the 
full range of the scale from 400-1600 (lower = 400, upper = 1600).

even 
minute

odd 
minute



What is the probability of the procedure?

You can see that there are only two Jon Intervals: one that never contains the 
true mean of the SATs at NYUAD because it doesn’t contain real scores (0-399 
are not possible scores!), and one that always contains the true mean 
because it contains all of the possible scores.

And you can also see that both have an equal probability of occurring over the 
long run (even vs odd minutes), so the long-run frequency that Jon Intervals 
will contain the true mean is: 

1

2
= .5

In other words, Jon Intervals contain 
population mean 50% of the time. (Not 
good, but not bad either)

0 1600400 800 1200

impossible possible

even minute

odd minute



What is the probability that a specific Jon 
Interval in front of me contains the mean?

Now let’s look at the specific values of a specific interval sitting in front of us. 
There are only two possible intervals, so we can look at both of them in turn. 

Bad claim 1: that there is a 50% chance that the mean is within a specific CI in 
front of you.

Bad claim 2: that the specific values in this specific interval are more likely to 
be correct than the values outside of it.

even minute
0 399

impossible

Let’s start with the even-minute interval. 
And let’s ask about the two claims that I told 
you could not be made about intervals.

This is obviously false. We know that there is a 0% chance that 
the mean SAT score is in this interval because it does not contain 
possible scores.

This is also obviously false. These scores are impossible, so they 
are less likely than scores outside of it.



What is the probability that a specific Jon 
Interval in front of me contains the mean?

Now let’s look at the odd-minute interval:

Bad claim 1: that there is a 50% chance that the mean is within in a specific CI 
in front of you.

Bad claim 2: that the specific values in this specific interval are more likely to 
be correct than the values outside of it.

This is obviously false. We know that there is a 100% chance that 
the mean SAT score is in this interval because it contains all of the 
possible scores.

This is true, but in a completely uninformative way. This is a 
meaningless interval because it contains all possible values.

1600400 800 1200

possible

odd minute



What you can and can’t claim about CIs

The probability statement for confidence intervals (that it is 50% or 95% or 
whatever) is about the procedure of drawing the boundaries. It is not about 
the specific values contained within the boundaries.

What you can claim correctly: the procedure for drawing CIs means that 95% 
of the CIs drawn this way will contain the population mean. 

What you can claim correctly: if a value is outside of the CI, a t-test would be 
significant at the equivalent alpha level (95% = .05 alpha, .025 in each tail) 
for a population mean of that value.

What you CAN'T claim: anything about the specific values in a single CI that is 
sitting in front of you.

You cannot say that there is a 95% chance that the mean is within this CI.

You cannot say that the specific values in this specific interval in front of you 
are more likely to be correct than the values outside of it.



Most people make incorrect claims about CIs

It is very common for people to make incorrect claims about CIs:


People sometimes say there is a 95% chance that the value is within the 
specific CI in front of them.


People sometimes say that the values in the CI are more likely than ones 
outside it.

1. Remember probability with CIs is about frequentism - long-run relative 
frequency. It is not about belief (e.g., about the population mean).


2. Remember that CIs are about the process -- the process yields an interval 
containing the pop mean 95% of the time. It is not about a specific CI or a 
specific value in front of you. (Visualize the CI simulation)


3. Use CIs when you want to decide and declare that the population mean is 
within some interval (like stating your guess about a jar of jellybeans).


4. Use CIs when you want to determine which values would or would not be 
significant in a two-tailed one-sample t-test. CIs are t-tests.

What should you do?


